资讯中心NEWS CENTER

在发展中求生存,不断完善,以良好信誉和科学的管理促进企业迅速发展
资讯中心 产品中心

首页-资讯中心-河南语音识别云

河南语音识别云

更新时间:2025-11-17      点击次数:13

    该芯片集成了语音识别处理器和一些外部电路,包括A/D、D/A转换器、麦克风接口、声音输出接口等,而且可以播放MP3。不需要外接任何的辅助芯片如FLASH,RAM等,直接集成到产品中即可以实现语音识别、声控、人机对话功能。MCU通信采用SPI总线方式,时钟不能超过1.5MHz。麦克风工作电路,音频输出只需将扬声器连接到SPOP和SPON即可。使用SPI总线方式时,LD3320的MD要设为高电平,SPIS设为低电平。SPI总线的引脚有SDI,SDO,SDCK以及SCS。INTB为中断端口,当有识别结果或MP3数据不足时,会触发中断,通知MCU处理。RSTB引脚是LD3320复位端,低电平有效。LED1,LED2作为上电指示灯。3软件系统设计软件设计主要有两部分,分别为移植LD3320官方代码和编写语音识别应用程序。3.1移植LD3320源代码LD3320源代码是基于51单片机实现的,SPI部分采用的是软件模拟方式,但在播放MP3数据时会有停顿现象,原因是51单片机主频较低,导致SPI速率很慢,不能及时更新MP3数据。移植到ATMEGA128需要修改底层寄存器读写函数、中断函数等。底层驱动在Reg_RW.c文件中,首先在Reg_RW.h使用HARD_PARA_PORT宏定义,以支持硬件SPI。一个众所周知的应用是自动语音识别,以应对不同的说话速度。河南语音识别云

    亚马逊的Echo音箱刚开始推出的两三年,国内的智能音箱市场还不温不火,不为消费者所接受,因此销量非常有限。但自2017年以来,智能家居逐渐普及,音箱市场开始火热,为抢占语音入口,阿里巴巴、百度、小米、华为等大公司纷纷推出了各自的智能音箱。据Canalys报告,2019年第1季度中国市场智能音箱出货量全球占比51%,超过美国,成为全球*大的智能音箱市场。据奥维云网(AVC)数据显示,2019年上半年中国智能音箱市场销量为1556万台,同比增长233%。随着语音市场的扩大,国内涌现出一批具有强大竞争力的语音公司和研究团队,包括云知声、思必驰、出门问问、声智科技、北科瑞声、天聪智能等。他们推出的语音产品和解决方案主要针对特定场景,如车载导航、智能家居、医院的病历输入、智能客服、会议系统、证券柜台业务等,因为采用深度定制,识别效果和产品体验更佳。在市场上获得了不错的反响。针对智能硬件的离线识别,云知声和思必驰等公司还研发出专门的语音芯片,进一步降低功耗,提高产品的性价比。在国内语音应用突飞猛进的同时,各大公司和研究团队纷纷在国际学术会议和期刊上发表研究成果。2015年,张仕良等人提出了前馈型序列记忆网络。重庆谷歌语音识别舌头部位不同可以发出多种音调,组合变化多端的辅音,可产生大量的、相似的发音,这对语音识别提出了挑战。

    那就每家都要建立自己云服务稳定,确保响应速度,适配自己所选择的硬件平台,逐项整合具体的内容(比如音乐、有声读物)。这从产品方或者解决方案商的视角来看是不可接受的。这时候就会催生相应的平台服务商,它要同时解决技术、内容接入和工程细节等问题,终达成试错成本低、体验却足够好的目标。平台服务并不需要闭门造车,平台服务的前提是要有能屏蔽产品差异的操作系统,这是AI+IOT的特征,也是有所参照的,亚马逊过去近10年里是同步着手做两件事:一个是持续推出面向终端用户的产品,比如Echo,EchoShow等;一个是把所有产品所内置的系统Alexa进行平台化,面向设备端和技能端同步开放SDK和调试发布平台。虽然GoogleAssistant号称单点技术更为,但从各方面的结果来看Alexa是当之无愧的为的系统平台,可惜的是Alexa并不支持中文以及相应的后台服务。国内则缺乏亚马逊这种统治力的系统平台提供商,当前的平台提供商分为两个阵营:一类是以百度、阿里、讯飞、小米、腾讯为的传统互联网或者上市公司;一类是以声智等为的新兴人工智能公司。新兴的人工智能公司相比传统公司产品和服务上的历史包袱更轻,因此在平台服务上反倒是可以主推一些更为面向未来、有特色的基础服务。

    

    声音的感知qi官正常人耳能感知的频率范围为20Hz~20kHz,强度范围为0dB~120dB。人耳对不同频率的感知程度是不同的。音调是人耳对不同频率声音的一种主观感觉,单位为mel。mel频率与在1kHz以下的频率近似成线性正比关系,与1kHz以上的频率成对数正比关系。02语音识别过程人耳接收到声音后,经过神经传导到大脑分析,判断声音类型,并进一步分辨可能的发音内容。人的大脑从婴儿出生开始,就不断在学习外界的声音,经过长时间的潜移默化,终才听懂人类的语言。机器跟人一样,也需要学习语言的共性和发音的规律,才能进行语音识别。音素(phone)是构成语音的*小单位。英语中有48个音素(20个元音和28个辅音)。采用元音和辅音来分类,汉语普通话有32个音素,包括元音10个,辅音22个。但普通话的韵母很多是复韵母,不是简单的元音,因此拼音一般分为声母(initial)和韵母(final)。汉语中原来有21个声母和36个韵母,经过扩充(增加aoeywv)和调整后,包含27个声母和38个韵母(不带声调)。普通话的声母和韵母(不带声调)分类表音节(syllable)是听觉能感受到的自然的语音单位,由一个或多个音素按一定的规律组合而成。英语音节可单独由一个元音构成。也可由一个元音和一个或多个辅音构成。除了传统语音识别技术之外,基于深度学习的语音识别技术也逐渐发展起来。

    它在某些实际场景下的识别率无法达到人们对实际应用的要求和期望,这个阶段语音识别的研究陷入了瓶颈期。第三阶段:深度学习(DNN-HMM,E2E)2006年,变革到来。Hinton在全世界学术期刊Science上发表了论文,di一次提出了"深度置信网络"的概念。深度置信网络与传统训练方式的不同之处在于它有一个被称为"预训练"(pre-training)的过程,其作用是为了让神经网络的权值取到一个近似优解的值,之后使用反向传播算法(BP)或者其他算法进行"微调"(fine-tuning),使整个网络得到训练优化。Hinton给这种多层神经网络的相关学习方法赋予了一个全新的名词——"深度学习"(DeepLearning,DL)。深度学习不*使深层的神经网络训练变得更加容易,缩短了网络的训练时间,而且还大幅度提升了模型的性能。以这篇划时代的论文的发表为转折点,从此,全世界再次掀起了对神经网络的研究热潮,揭开了属于深度学习的时代序幕。在2009年,Hinton和他的学生Mohamed将深层神经网络(DNN)应用于声学建模,他们的尝试在TIMIT音素识别任务上取得了成功。然而TIMIT数据库包含的词汇量较小。在面对连续语音识别任务时还往往达不到人们期望的识别词和句子的正确率。2012年。语音识别技术在个人助理、智能家居等很多领域都有运用到。宁夏语音识别库

语音识别的精度和速度取决实际应用环境。河南语音识别云

    语音识别自半个世纪前诞生以来,一直处于不温不火的状态,直到2009年深度学习技术的长足发展才使得语音识别的精度提高,虽然还无法进行无限制领域、无限制人群的应用,但也在大多数场景中提供了一种便利高效的沟通方式。本篇文章将从技术和产业两个角度来回顾一下语音识别发展的历程和现状,并分析一些未来趋势,希望能帮助更多年轻技术人员了解语音行业,并能产生兴趣投身于这个行业。语音识别,通常称为自动语音识别,英文是AutomaticSpeechRecognition,缩写为ASR,主要是将人类语音中的词汇内容转换为计算机可读的输入,一般都是可以理解的文本内容,也有可能是二进制编码或者字符序列。但是,我们一般理解的语音识别其实都是狭义的语音转文字的过程,简称语音转文本识别(SpeechToText,STT)更合适,这样就能与语音合成(TextToSpeech,TTS)对应起来。语音识别是一项融合多学科知识的前沿技术,覆盖了数学与统计学、声学与语言学、计算机与人工智能等基础学科和前沿学科,是人机自然交互技术中的关键环节。但是,语音识别自诞生以来的半个多世纪,一直没有在实际应用过程得到普遍认可,一方面这与语音识别的技术缺陷有关,其识别精度和速度都达不到实际应用的要求。河南语音识别云

关注我们
微信账号

扫一扫
手机浏览

Copyright©2025    版权所有   All Rights Reserved   哈尔滨云星洗涤设备有限公司  网站地图  移动端